November 13, 2007

THE HASTY RETREAT:

Why Pigs Don’t Have Wings (Jerry Fodor, 10/18/07, London Review of Books)

Two kinds of consideration now threaten to displace natural selection from its position at the centre of evolutionary theory; one is more or less conceptual, the other is more or less empirical.

The conceptual issue. There is, arguably, an equivocation at the heart of selection theory; and slippage along the consequent faultline threatens to bring down the whole structure. Here’s the problem: you can read adaptationism as saying that environments select creatures for their fitness; or you can read it as saying that environments select traits for their fitness. It looks like the theory must be read both ways if it’s to do the work that it’s intended to: on the one hand, forces of selection must act on individual creatures since it is individual creatures that live, struggle, reproduce and die. On the other hand, forces of selection must act on traits since it is phenotypes – bundles of heritable traits – whose evolution selection theory purports to explain. It isn’t obvious, however, that the theory of selection can sustain both readings at once. Perhaps the consensus view among Darwinists is that phenotypes evolve because fit individuals are selected for the traits that make them fit. This way of putting it avoids the ambiguity, but whether it’s viable depends on whether adaptationism is able to provide the required notion of ‘selection for’; and it seems, on reflection, that maybe it can’t. Hence the current perplexity.

History might reasonably credit Stephen J. Gould and Richard Lewontin as the first to notice that something may be seriously wrong in this part of the wood. Their 1979 paper, ‘The Spandrels of S. Marco and The Panglossian Paradigm: A Critique of the Adaptationist Programme’, ignited an argument about the foundations of selection theory that still shows no signs of quieting. A spandrel is one of those more-or-less triangular spaces that you find at the junctures of the arches that hold up a dome. They are often highly decorated; painters competed in devising designs to fit them. Indeed (and this is Gould and Lewontin’s main point), casual inspection might suggest that the spandrels are there because they provide the opportunity for decoration; that, an adaptationist might say, is what spandrels were selected for. But actually, according to Gould and Lewontin, that gets things backwards. In fact, spandrels are a by-product of an arch-and-dome architecture; decide on the latter and you get the former for better or worse. Arches were selected for holding up domes; spandrels just came along for the ride.

I assume that Gould and Lewontin got their architectural history right, but it doesn’t really matter for the purposes at hand. What matters is that though spandrels survived and flourished, nothing at all follows about what, if anything, they were selected for. To a first approximation, you have spandrels if and only if you have a dome that’s supported by arches; the two are, as logicians say, coextensive. Is it, then, that selection for arches explains why there are spandrels? Or is it that selection for spandrels explains why there are arches? It looks, so far, as though the story could go either way; so what tips the balance? Surely it’s that domes and arches are designed objects. Somebody actually thought about, and decided on, the architecture of San Marco; and what he had in mind when he did so was that the arches should support the dome, not that they should form spandrels at their junctures. So that settles it: the spandrels weren’t selected for anything at all; they’re just part of the package. The question, however, is whether the same sort of reasoning can apply to the natural selection of the phenotypic traits of organisms, where there is, by assumption, no architect to do the deciding. If cathedrals weren’t designed but grew in the wild, would the right evolutionary story be that they have arches because they were selected for having spandrels? Or would it be that they have spandrels because they were selected for having arches? Or neither? Or both?

It’s a commonplace that Darwin constructed the theory of natural selection with an eye to what breeders do when they choose which creatures to encourage to reproduce. This reading of Darwin is by no means idiosyncratic. Darwin ‘argues by example, not analogy,’ Adam Gopnik wrote in the New Yorker in October last year. ‘The point of the opening of “The Origin” isn’t that something similar happens with domesticated breeds and natural species; the point is that the very same thing happens, albeit unplanned and over a much longer period.’ It’s true, of course, that breeding, like evolution, can alter phenotypes over time, with consequent effects on phylogenetic relations. But, on the face of it, the mechanisms by which breeding and evolution operate could hardly be more different. How could a studied decision to breed for one trait or another be ‘the very same thing’ as the adventitious culling of a population? Gopnik doesn’t say.

The present worry is that the explication of natural selection by appeal to selective breeding is seriously misleading, and that it thoroughly misled Darwin. Because breeders have minds, there’s a fact of the matter about what traits they breed for; if you want to know, just ask them. Natural selection, by contrast, is mindless; it acts without malice aforethought. That strains the analogy between natural selection and breeding, perhaps to the breaking point. What, then, is the intended interpretation when one speaks of natural selection? The question is wide open as of this writing.

The answers that have been suggested so far have not been convincing. In particular, though there is no end of it in popular accounts of adaptationism, it is a Very Bad Idea to try and save the bacon by indulging in metaphorical anthropomorphisms. It couldn’t, for example, be literally true that the traits selected for are the ones Mother Nature has in mind when she does the selecting; nor can it be literally true that they are the traits one’s selfish genes have in mind when they undertake to reproduce themselves. There is, after all, no Mother Nature, and genes don’t have, or lack, personality defects. Metaphors are fine things; science probably couldn’t be done without them. But they are supposed to be the sort of things that can, in a pinch, be cashed. Lacking a serious and literal construal of ‘selection for’, adaptationism founders on this methodological truism.

There are delicious ironies here. Getting minds in general, and God’s mind in particular, out of biological explanations is a main goal of the adaptationist programme. I am, myself, all in favour of that; since I’m pretty sure that neither exists, I see nothing much to choose between God and Mother Nature. Maybe one can, after all, make sense of mindless environmental variables selecting for phenotypic traits. That is, maybe one can get away with claiming that phenotypes are like arches in that both are designed objects. The crucial test is whether one’s pet theory can distinguish between selection for trait A and selection for trait B when A and B are coextensive: were polar bears selected for being white or for matching their environment? Search me; and search any kind of adaptationism I’ve heard of. Nor am I holding my breath till one comes along.

The empirical issue. It wouldn’t be unreasonable for a biologist of the Darwinist persuasion to argue like this: ‘Bother conceptual issues and bother those who raise them. We can’t do without biology and biology can’t do without Darwinism. So Darwinism must be true.’ Darwinists do often argue this way; and the fear of hyperbole seems not to inhibit them. The biologist Theodosius Dobzhansky said that nothing in biology makes sense without Darwinism, and he is widely paraphrased. The philosopher Daniel Dennett says that ‘in a single stroke, the idea of evolution by natural selection unifies the realm of life, meaning and purpose with the realm of space and time, cause and effect, mechanism and physical law.’ (Phew!) Richard Dawkins says, ‘If superior creatures from space ever visit earth, the first question they will ask, in order to assess the level of our civilisation, is: “Have they discovered evolution yet?”’ Shake a stick at a Darwinist treatise and you’re sure to find, usually in the first chapter, claims for the indispensability of adaptationism. Well, if adaptationism really is the only game in town, if the rest of biology really does presuppose it, we had better cleave to it warts and all. What is indispensable therefore cannot be dispensed with, as Wittgenstein might have said. The breaking news, however, is that serious alternatives to adaptationism have begun to emerge; ones that preserve the essential claim that phenotypes evolve, but depart to one degree or other from Darwin’s theory that natural selection is the mechanism by which they do. There is now far more of this sort of thing around than I am able to survey. But an example or two may give the feel of it.

Adaptationism is a species of what one might call ‘environmentalism’ in biology. (It’s not, by any means, the only species; Skinnerian learning theory is another prime example.) The basic idea is that where you find phenotypic structure, you can generally find corresponding structure in the environment that caused it. Phylogeny tells us that phenotypes don’t occur at random; they form a more or less orderly taxonomic tree. Very well then, there must be nonrandomness in the environmental variables by which the taxonomic tree is shaped. Dennett has put this idea very nicely: ‘Functioning structure carries implicit information about the environment in which its function “works”. The wings of a seagull . . . imply that the creature whose wings they are is excellently adapted for flight in a medium having the specific density and viscosity of the atmosphere within a thousand metres or so of the surface of the Earth.’ So, phenotypes carry information about the environment in which they evolved in something like the way that the size, shape, whatever, of a crater carries information about the size, shape, whatever, of the meteor that made it. Phenotypes aren’t, in short, random collections of traits, and nonrandomness doesn’t occur at random; the more nonrandomness there is, the less likely it is to have been brought about by chance. That’s a tautology. So, if the nonrandomness of phenotypes isn’t a reflection of the orderliness of God’s mind, perhaps it is a reflection of the orderliness of the environments in which the phenotypes evolved. That’s the theory of natural selection in a nutshell.

But as soon as it’s put that way, it’s seen not to be the only possibility. External environments are structured in all sorts of ways, but so, too, are the insides of the creatures that inhabit them. So, in principle at least, there’s an alternative to Darwin’s idea that phenotypes ‘carry implicit information about’ the environments in which they evolve: namely, that they carry implicit information about the endogenous structure of the creatures whose phenotypes they are. This idea currently goes by the unfortunate soubriquet ‘Evo-Devo’ (short for ‘evolutionary-developmental theory’). Everybody thinks evo-devo must be at least part of the truth, since nobody thinks that phenotypes are shaped directly by environmental variables. Even the hardest core Darwinists agree that environmental effects on a creature’s phenotype are mediated by their effects on the creature’s genes: its ‘genome’. Indeed, in the typical case, the environment selects a phenotype by selecting a genome that the phenotype expresses. Once in place, this sort of reasoning spreads to other endogenous factors. Phenotypic structure carries information about genetic structure. And genotypic structure carries information about the biochemistry of genes. And the biochemical structure of genes carries information about their physical structure. And so on down to quantum mechanics for all I know. It is, in short, an entirely empirical question to what extent exogenous variables are what shape phenotypes; and it’s entirely possible that adaptationism is the wrong answer.

One can think of the Darwinian account of evolution as prompted by the question: why are some phenotypes more similar than others? Darwin’s answer was that phenotypic similarity is, pretty generally, explained by common ancestry; and the more similar two creature’s phenotypes, the less remote is the nearest ancestor that they share. There are isolated examples to the contrary, but there’s no serious doubt that this account is basically correct. And, if it’s not the best idea anybody ever had, it’s pretty good by any of the local standards. When you ask Darwin’s question – why are phenotypes often similar? – you do indeed get Darwin’s answer. But if you ask instead why it is that some phenotypes don’t occur, an adaptationist explanation often sounds somewhere between implausible and preposterous. For example, nobody, not even the most ravening of adaptationists, would seek to explain the absence of winged pigs by claiming that, though there used to be some, the wings proved to be a liability so nature selected against them. Nobody expects to find fossils of a species of winged pig that has now gone extinct. Rather, pigs lack wings because there’s no place on pigs to put them. To add wings to a pig, you’d also have to tinker with lots of other things. In fact, you’d have to rebuild the pig whole hog: less weight, appropriate musculature, an appropriate metabolism, an apparatus for navigating in three dimensions, a streamlined silhouette and god only knows what else; not to mention feathers. The moral is that if you want them to have wings, you will have to redesign pigs radically. But natural selection, since it is incremental and cumulative, can’t do that sort of thing. Evolution by natural selection is inherently a conservative process, and once you’re well along the evolutionary route to being a pig, your further options are considerably constrained; you can’t, for example, go back and retrofit feathers.

That all seems reasonable on the face of it; but notice that this sort of ‘channelling’ imposes kinds of constraint on what phenotypes can evolve that aren’t explained by natural selection. Winged pigs were never on the cards, so nature never had to select against them. How many such cases are there? How often does a phenotype carry information not about a creature’s environment but about aspects of its endogenous structure? Nobody knows.

But it bears emphasis that, on this way of thinking about evolution, the mechanisms by which phenotypes are constructed may very well be numerous and heterogeneous. This is one of the important ways in which evo-devo differs from adaptationism. Darwinists generally hold that natural selection, even if it isn’t all there is to evolution, is vastly the most important part. By contrast, channelling couldn’t conceivably explain the structure of phenotypes all by itself. But that leaves it open that channelling might be one among many mechanisms by which phenotypes express endogenous structure, and which, taken together, account for (some? many? all of?) the facts of evolution. If, as I suggested, the notion of natural selection is conceptually flawed, such alternatives would be distinctly welcome.


The Faith endures, all it lacks is alternative justifications.

Posted by Orrin Judd at November 13, 2007 8:27 AM
Comments

"The time has come," the Walrus said,
"To talk of many things:
Of shoes--and ships--and sealing-wax--
Of cabbages--and kings--
And why the sea is boiling hot--
And whether pigs have wings."

Posted by: Brandon at November 13, 2007 10:36 AM

"Are we not men? We are Evo-Devo!"

Posted by: Raoul Ortega at November 13, 2007 11:47 AM

Do athletes who take HGH sidestep Darwin, or fulfil him?

Were the East Germans "breeding" their athletes?

Doesn't Darwin need a bit more randomness (in nature) for his theories?

Posted by: ratbert at November 14, 2007 10:21 PM
« THE QUEEN OF QUEENS: | Main | YOU SHOULD SEE THE TAILGATES: »