May 30, 2018

WE ARE ALL POST-MODERN:

Time Bandits: What were Einstein and Gödel talking about? (Jim Holt, Jan. 22nd, 2005, The New Yorker)

In 1906, the year after Einstein's annus mirabilis, Kurt Gödel was born in the city of Brno (now in the Czech Republic). As Rebecca Goldstein recounts in her enthralling intellectual biography "Incompleteness: The Proof and Paradox of Kurt Gödel" (Atlas/Norton; $22.95), Kurt was both an inquisitive child--his parents and brother gave him the nickname der Herr Warum, "Mr. Why?"--and a nervous one. At the age of five, he seems to have suffered a mild anxiety neurosis. At eight, he had a terrifying bout of rheumatic fever, which left him with the lifelong conviction that his heart had been fatally damaged.

Gödel entered the University of Vienna in 1924. He had intended to study physics, but he was soon seduced by the beauties of mathematics, and especially by the notion that abstractions like numbers and circles had a perfect, timeless existence independent of the human mind. This doctrine, which is called Platonism, because it descends from Plato's theory of ideas, has always been popular among mathematicians. In the philosophical world of nineteen-twenties Vienna, however, it was considered distinctly old-fashioned. Among the many intellectual movements that flourished in the city's rich café culture, one of the most prominent was the Vienna Circle, a group of thinkers united in their belief that philosophy must be cleansed of metaphysics and made over in the image of science. Under the influence of Ludwig Wittgenstein, their reluctant guru, the members of the Vienna Circle regarded mathematics as a game played with symbols, a more intricate version of chess. What made a proposition like "2 + 2 = 4" true, they held, was not that it correctly described some abstract world of numbers but that it could be derived in a logical system according to certain rules.

Gödel was introduced into the Vienna Circle by one of his professors, but he kept quiet about his Platonist views. Being both rigorous and averse to controversy, he did not like to argue his convictions unless he had an airtight way of demonstrating that they were valid. But how could one demonstrate that mathematics could not be reduced to the artifices of logic? Gödel's strategy--one of "heart-stopping beauty," as Goldstein justly observes--was to use logic against itself. Beginning with a logical system for mathematics, one presumed to be free of contradictions, he invented an ingenious scheme that allowed the formulas in it to engage in a sort of double speak. A formula that said something about numbers could also, in this scheme, be interpreted as saying something about other formulas and how they were logically related to one another. In fact, as Gödel showed, a numerical formula could even be made to say something about itself. (Goldstein compares this to a play in which the characters are also actors in a play within the play; if the playwright is sufficiently clever, the lines the actors speak in the play within the play can be interpreted as having a "real life" meaning in the play proper.) Having painstakingly built this apparatus of mathematical self-reference, Gödel came up with an astonishing twist: he produced a formula that, while ostensibly saying something about numbers, also says, "I am not provable." At first, this looks like a paradox, recalling as it does the proverbial Cretan who announces, "All Cretans are liars." But Gödel's self-referential formula comments on its provability, not on its truthfulness. Could it be lying? No, because if it were, that would mean it could be proved, which would make it true. So, in asserting that it cannot be proved, it has to be telling the truth. But the truth of this proposition can be seen only from outside the logical system. Inside the system, it is neither provable nor disprovable. The system, then, is incomplete. The conclusion--that no logical system can capture all the truths of mathematics--is known as the first incompleteness theorem. Gödel also proved that no logical system for mathematics could, by its own devices, be shown to be free from inconsistency, a result known as the second incompleteness theorem.

Wittgenstein once averred that "there can never be surprises in logic." But Gödel's incompleteness theorems did come as a surprise. In fact, when the fledgling logician presented them at a conference in the German city of Königsberg in 1930, almost no one was able to make any sense of them. What could it mean to say that a mathematical proposition was true if there was no possibility of proving it? The very idea seemed absurd. Even the once great logician Bertrand Russell was baffled; he seems to have been under the misapprehension that Gödel had detected an inconsistency in mathematics. "Are we to think that 2 + 2 is not 4, but 4.001?" Russell asked decades later in dismay, adding that he was "glad [he] was no longer working at mathematical logic." As the significance of Gödel's theorems began to sink in, words like "debacle," "catastrophe," and "nightmare" were bandied about. It had been an article of faith that, armed with logic, mathematicians could in principle resolve any conundrum at all--that in mathematics, as it had been famously declared, there was no ignorabimus. Gödel's theorems seemed to have shattered this ideal of complete knowledge.

That was not the way Gödel saw it. He believed he had shown that mathematics has a robust reality that transcends any system of logic. But logic, he was convinced, is not the only route to knowledge of this reality; we also have something like an extrasensory perception of it, which he called "mathematical intuition." It is this faculty of intuition that allows us to see, for example, that the formula saying "I am not provable" must be true, even though it defies proof within the system where it lives. 

Fortunately, the Anglosphere never succumbed to the dream of Reason.

Posted by at May 30, 2018 4:50 AM

  

« WORSE THAN USELESS: | Main | LEATHERMAN: »