April 25, 2017

...AND CHEAPER...:

The 3-D Printer That Could Finally Change Manufacturing : Desktop Metal thinks its machines will give designers and manufacturers a practical and affordable way to print metal parts. (David Rotman  April 25, 2017, MIT Technology Review)

The shortcomings of 3-D printing mean the vision that has long excited its advocates remains elusive. They would like to create a digital design, print out prototypes that they could test and refine, and then use the digital file of the optimized version to create a commercial product or part out of the same material whenever they hit "make" on a 3-D printer. Having an affordable and fast way to print metal parts would be an important step in making this vision a reality.

It would give designers more freedom, allowing them to create and test parts and devices with complex shapes that can't be made easily with any other production method--say, an intricate aluminum lattice or a metal object with internal cavities. It could eventually enable engineers and materials scientists to create parts with new functions and properties by depositing various combinations of materials--for example, printing out a magnetic metal next to a nonmagnetic one. Beyond that, it would redefine the economics of mass production, because the cost of printing something would be the same regardless of how many items were produced. That would change how manufacturers think about the size of factories, the need for backup inventory (why keep many parts in stock if you can simply and quickly print one out?), and the process of tailoring manufacturing to specialized products.

This is why there has been a race to turn 3-D printing into a new way to produce parts. Longtime suppliers of 3-D printers, including Stratasys and 3D Systems, are introducing increasingly advanced machines that are fast enough for manufacturers to use. Last year, HP introduced a line of 3-D printers that the company says will allow manufacturers to prototype and make products with nylon, a widely used thermoplastic. And last fall, GE spent over a billion dollars on a pair of European companies specializing in 3-D-printing of metal parts.

But the real competition for Desktop Metal is probably not from the growing number of companies in 3-D printing. For one thing, the 3-D printers from HP, Stratasys (an investor in Desktop Metal), and 3D Systems mainly use various types of plastics, not the range of metals Fulop's company wants to use in its printers. And GE's high-end machines overlap little with Desktop Metal's market ambitions. Instead, the real competitors for Desktop Metal are more likely to be established metal-processing technologies. Those include automated machining techniques--such as the method used to make the ultra-thin aluminum back casing of iPhones--and a rapidly growing practice called metal injection molding, a common way to mass-produce metal products.

In other words, rather than merely trying to outdo other 3-D printers, Desktop Metal will have the tough task of converting manufacturers away from production methods that are at the heart of their businesses. But the very existence of this large, established market is what makes the prospect so intriguing. Making metal parts, says Fulop, "is a trillion-dollar industry." And even if 3-D printing wins only a small portion of it, he adds, it could still represent a multibillion-dollar opportunity.

Posted by at April 25, 2017 5:23 AM

  

« NOT SO VALIANT (profanity alert): | Main | BADGE OF HONOR: »