April 26, 2014

THE MALTHUSIANS NEVER TIRE OF BEING WRONG:

The World's Resources Aren't Running Out : Ecologists worry that the world's resources come in fixed amounts that will run out, but we have broken through such limits again and again (MATT RIDLEY, April 25, 2014, WSJ)

[H]ere's a peculiar feature of human history: We burst through such limits again and again. After all, as a Saudi oil minister once said, the Stone Age didn't end for lack of stone. Ecologists call this "niche construction"--that people (and indeed some other animals) can create new opportunities for themselves by making their habitats more productive in some way. Agriculture is the classic example of niche construction: We stopped relying on nature's bounty and substituted an artificial and much larger bounty.

Economists call the same phenomenon innovation. What frustrates them about ecologists is the latter's tendency to think in terms of static limits. Ecologists can't seem to see that when whale oil starts to run out, petroleum is discovered, or that when farm yields flatten, fertilizer comes along, or that when glass fiber is invented, demand for copper falls.

That frustration is heartily reciprocated. Ecologists think that economists espouse a sort of superstitious magic called "markets" or "prices" to avoid confronting the reality of limits to growth. The easiest way to raise a cheer in a conference of ecologists is to make a rude joke about economists.

I have lived among both tribes. I studied various forms of ecology in an academic setting for seven years and then worked at the Economist magazine for eight years. When I was an ecologist (in the academic sense of the word, not the political one, though I also had antinuclear stickers on my car), I very much espoused the carrying-capacity viewpoint--that there were limits to growth. I nowadays lean to the view that there are no limits because we can invent new ways of doing more with less. [...]


The best-selling book "Limits to Growth," published in 1972 by the Club of Rome (an influential global think tank), argued that we would have bumped our heads against all sorts of ceilings by now, running short of various metals, fuels, minerals and space. Why did it not happen? In a word, technology: better mining techniques, more frugal use of materials, and if scarcity causes price increases, substitution by cheaper material. We use 100 times thinner gold plating on computer connectors than we did 40 years ago. The steel content of cars and buildings keeps on falling.

Until about 10 years ago, it was reasonable to expect that natural gas might run out in a few short decades and oil soon thereafter. If that were to happen, agricultural yields would plummet, and the world would be faced with a stark dilemma: Plow up all the remaining rain forest to grow food, or starve.

But thanks to fracking and the shale revolution, peak oil and gas have been postponed. They will run out one day, but only in the sense that you will run out of Atlantic Ocean one day if you take a rowboat west out of a harbor in Ireland. Just as you are likely to stop rowing long before you bump into Newfoundland, so we may well find cheap substitutes for fossil fuels long before they run out.

The economist and metals dealer Tim Worstall gives the example of tellurium, a key ingredient of some kinds of solar panels. Tellurium is one of the rarest elements in the Earth's crust--one atom per billion. Will it soon run out? Mr. Worstall estimates that there are 120 million tons of it, or a million years' supply altogether. It is sufficiently concentrated in the residues from refining copper ores, called copper slimes, to be worth extracting for a very long time to come. One day, it will also be recycled as old solar panels get cannibalized to make new ones.

Or take phosphorus, an element vital to agricultural fertility. The richest phosphate mines, such as on the island of Nauru in the South Pacific, are all but exhausted. Does that mean the world is running out? No: There are extensive lower grade deposits, and if we get desperate, all the phosphorus atoms put into the ground over past centuries still exist, especially in the mud of estuaries. It's just a matter of concentrating them again.

In 1972, the ecologist Paul Ehrlich of Stanford University came up with a simple formula called IPAT, which stated that the impact of humankind was equal to population multiplied by affluence multiplied again by technology. In other words, the damage done to Earth increases the more people there are, the richer they get and the more technology they have.

Many ecologists still subscribe to this doctrine, which has attained the status of holy writ in ecology. But the past 40 years haven't been kind to it. In many respects, greater affluence and new technology have led to less human impact on the planet, not more. Richer people with new technologies tend not to collect firewood and bushmeat from natural forests; instead, they use electricity and farmed chicken--both of which need much less land. In 2006, Mr. Ausubel calculated that no country with a GDP per head greater than $4,600 has a falling stock of forest (in density as well as in acreage).

Haiti is 98% deforested and literally brown on satellite images, compared with its green, well-forested neighbor, the Dominican Republic. The difference stems from Haiti's poverty, which causes it to rely on charcoal for domestic and industrial energy, whereas the Dominican Republic is wealthy enough to use fossil fuels, subsidizing propane gas for cooking fuel specifically so that people won't cut down forests.

Part of the problem is that the word "consumption" means different things to the two tribes. Ecologists use it to mean "the act of using up a resource"; economists mean "the purchase of goods and services by the public" (both definitions taken from the Oxford dictionary).

But in what sense is water, tellurium or phosphorus "used up" when products made with them are bought by the public? They still exist in the objects themselves or in the environment. Water returns to the environment through sewage and can be reused. Phosphorus gets recycled through compost. Tellurium is in solar panels, which can be recycled. As the economist Thomas Sowell wrote in his 1980 book "Knowledge and Decisions," "Although we speak loosely of 'production,' man neither creates nor destroys matter, but only transforms it."

Posted by at April 26, 2014 7:04 AM
  

blog comments powered by Disqus
« GROWING UP: | Main | IF YOU CAN WIN WITH THE SOX AND LIVERPOOL, YOU'RE THE GREATEST OWNER EVER: »