May 3, 2021


Why Not Turn Airports Into Giant Solar Farms? (MATT SIMON, 05.03.2021, Wired)

So why aren't we covering our airports--dedicated spaces that can't be used for anything other than the business of air travel--with solar arrays? Well, it turns out that airports not only have a lot of empty space, they also have a lot of rules.

But let's talk about their potential first. New research out of Australia shows how massively effective it would be to solarize 21 airports in that country. Researchers scanned satellite images of the airports for open roof space, where solar panels best avoid shadows, and found a total of 2.61 square kilometers, or 1 square mile, of usable area. 

For comparison, they also scanned satellite imagery and found 17,000 residential solar panels in the town of Bendigo, just north of Melbourne in southern Australia. The researchers calculated that the airports could potentially produce 10 times the amount of solar energy as those 17,000 residential panels--enough to power 136,000 homes. Perth Airport alone would generate twice as much as Bendigo. (Perth is very sunny, and the airport has lots of big buildings.) They further calculated that solarizing all 21 airports would reduce greenhouse gas emissions by 152 kilotons a year, the equivalent of pulling 71,000 passenger cars off the road.

With their plentiful sunshine, Australians are sitting on the energy equivalent of a gold mine; large swaths of blank rooftop space in airports provide an opportunity to centralize solar energy production. Installing panels house by house is great--and no one is saying we should stop, because we need all the solar power we can get. But commercial panels are bigger and more efficient, so they can generate more power. Plus, residential roofs come in all shapes and sizes, making them more difficult to work with than a commercial roof, which is usually flat. "Just imagine the labor to install on all the different shapes of residential buildings," says Royal Melbourne Institute of Technology geospatial scientist Chayn Sun, the corresponding author on the new paper describing the modeling in the Journal of Building Engineering. "Compare that with flat-roof, low-rise airport buildings."

Solarizing airports could potentially power the airport itself and even export energy. "Not only can they be self sufficient, they may have excess electricity they can send to the grid to supply the surrounding area," says Sun.

Installing solar panels over California's canals could yield water, land, air and climate payoffs (Brandi McKuin & Roger Bales, 5/03/21, The Conversation)

Climate change and water scarcity are front and center in the western U.S. The region's climate is warming, a severe multi-year drought is underway and groundwater supplies are being overpumped in many locations.

Western states are pursuing many strategies to adapt to these stresses and prepare for the future. These include measures to promote renewable energy development, conserve water, and manage natural and working lands more sustainably.

As engineers working on climate-smart solutions, we've found an easy win-win for both water and climate in California with what we call the "solar canal solution." About 4,000 miles of canals transport water to some 35 million Californians and 5.7 million acres of farmland across the state. Covering these canals with solar panels would reduce evaporation of precious water - one of California's most critical resources - and help meet the state's renewable energy goals, while also saving money.

Posted by at May 3, 2021 1:49 PM