November 28, 2017


A New Theory of the Universe : Biocentrism builds on quantum physics by putting life into the equation (Robert Lanza, MARCH 1, 2007, American Scholar)

Quantum mechanics describes the tiny world of the atom and its constituents with stunning accuracy. It is used to design and build much of the technology that drives modern society--transistors, lasers, and even wireless communication. But quantum mechanics in many ways threatens not only our essential and absolute notions of space and time, but indeed, all Newtonian-Darwinian conceptions of order and secure prediction.

"I think it is safe to say that no one understands quantum mechanics," said Nobel physicist Richard Feynman. "Do not keep saying to yourself, if you can possibly avoid it, 'But how can it be like that?' because you will go 'down the drain' into a blind alley from which nobody has yet escaped." The reason scientists go down the drain is that they refuse to accept the immediate and obvious implications of the experimental findings of quantum theory. Biocentrism is the only humanly comprehensible explanation for how the world can be the way it is. But, as the Nobel laureate physicist Steven Weinberg admits, "It's an unpleasant thing to bring people into the basic laws of physics."

In order to account for why space and time were relative to the observer, Einstein assigned tortuous mathematical properties to an invisible, intangible entity that cannot be seen or touched. This folly continues with the advent of quantum mechanics. Despite the central role of the observer in this theory--extending it from space and time to the very properties of matter itself--scientists still dismiss the observer as an inconvenience to their theories. It has been proven experimentally that when studying subatomic particles, the observer actually alters and determines what is perceived. The work of the observer is hopelessly entangled in that which he is attempting to observe. An electron turns out to be both a particle and a wave. But how and where such a particle will be located remains entirely dependent upon the very act of observation.

Pre-quantum physicists thought that they could determine the trajectory of individual particles with complete certainty. They assumed that the behavior of particles would be predictable if everything were known at the outset--that there was no limit to the accuracy with which they could measure the physical properties of a particle. But Werner Heisenberg's uncertainty principle showed that this is not the case. You can know either the velocity of a particle or its location but not both. If you know one, you cannot know the other. Heisenberg compared this to the little man and woman in a weather house, an old folk art device that functions as a hygrometer, indicating the air's humidity. The two figures ride opposite each other on a balance bar. "If one comes out," Heisenberg said, "the other goes in."

Consider for a moment that you are watching a film of an archery tournament, with the Zeno's arrow paradox in mind. An archer shoots, and the arrow flies. The camera follows the arrow's trajectory from the archer's bow toward the target. Suddenly the projector stops on a single frame of a stilled arrow. You stare at the image of an arrow in midflight. The pause in the film enables you to know the position of the arrow--it's just beyond the grandstand, about 20 feet above the ground. But you have lost all information about its momentum. It is going nowhere; its velocity is zero. Its path is no longer known. It is uncertain.

To measure the position precisely at any given instant is to lock in on one static frame, to put the movie on pause, so to speak. Conversely, as soon as you observe momentum you can't isolate a frame, because momentum is the summation of many frames. You can't know one and the other with complete accuracy. There is uncertainty as you hone in, whether on motion or position.

All of this makes sense from a biocentric perspective: time is the inner form of animal sense that animates events--the still frames--of the spatial world. The mind animates the world like the motor and gears of a projector. Each weaves a series of still pictures into an order, into the "current" of life. Motion is created in our minds by running "film cells" together. Remember that everything you perceive, even this page, is being reconstructed inside your head. It's happening to you right now. All of experience is an organized whirl of information in your brain.

Heisenberg's uncertainty principle has its root here: position (location in space) belongs to the outer world, and momentum (which involves the temporal) belongs to the inner world. By penetrating to the bottom of matter, scientists have reduced the universe to its most basic logic. Time is not a feature of the external spatial world. "Contemporary science," said Heisenberg, "today more than at any previous time, has been forced by nature herself to pose again the old question of the possibility of comprehending reality by mental processes, and to answer it in a slightly different way."

Twenty-five hundred years later, the Zeno arrow paradox finally makes sense. The Eleatic school of philosophy, which Zeno brilliantly defended, was right. So was Heisenberg when he said, "A path comes into existence only when you observe it." There is neither time nor motion without life. Reality is not "there" with definite properties waiting to be discovered but actually comes into being depending upon the actions of the observer.

Another aspect of modern physics, in addition to quantum uncertainty, also strikes at the core of Einstein's concept of discrete entities and spacetime. Einstein held that the speed of light is constant and that events in one place cannot influence events in another place simultaneously. In the relativity theory, the speed of light has to be taken into account for information to travel from one particle to another. However, experiment after experiment has shown that this is not the case. In 1965, Irish physicist John Bell created an experiment that showed that separate particles can influence each other instantaneously over great distances. The experiment has been performed numerous times and confirms that the properties of polarized light are correlated, or linked, no matter how far apart the particles are. There is some kind of instantaneous--faster than light--communication between them. All of this implies that Einstein's concept of spacetime, neatly divided into separate regions by light velocity, is untenable. Instead, the entities we observe are floating in a field of mind that is not limited by an external spacetime.

The experiments of Heisenberg and Bell call us back to experience itself, the immediacy of the infinite here and now, and shake our unexamined trust in objective reality. But another support for biocentrism is the famous two hole experiment, which demands that we go one step further: Zeno's arrow doesn't exist, much less fly, without an observer. The two-hole experiment goes straight to the core of quantum physics. Scientists have discovered that if they "watch" a subatomic particle pass through holes on a barrier, it behaves like a particle: like a tiny bullet, it passes through one or the other holes. But if the scientists do not observe the particle, then it exhibits the behavior of a wave. The two-hole experiment has many versions, but in short: If observed, particles behave like objects; if unobserved, they behave like waves and can go through more than one hole at the same time.

Dubbed quantum weirdness, this wave-particle duality has befuddled scientists for decades. Some of the greatest physicists have described it as impossible to intuit and impossible to formulate into words, and as invalidating common sense and ordinary perception. Science has essentially conceded that quantum physics is incomprehensible outside of complex mathematics. How can quantum physics be so impervious to metaphor, visualization, and language?

If we accept a life-created reality at face value, it becomes simple to understand. The key question is waves of what? Back in 1926, the Nobel laureate physicist Max Born demonstrated that quantum waves are waves of probability, not waves of material as the Austrian physicist Erwin Schrödinger had theorized. They are statistical predictions. Thus a wave of probability is nothing but a likely outcome. In fact, outside of that idea, the wave is not there. It's nothing. As John Wheeler, the eminent theoretical physicist, once said, "No phenomenon is a real phenomenon until it is an observed phenomenon."

A particle cannot be thought of as having any definite existence--either duration or a position in space--until we observe it. Until the mind sets the scaffolding of an object in place, an object cannot be thought of as being either here or there. Thus, quantum waves merely define the potential location a particle can occupy. A wave of probability isn't an event or a phenomenon, it is a description of the likelihood of an event or phenomenon occurring. Nothing happens until the event is actually observed. If you watch it go through the barrier, then the wave function collapses and the particle goes through one hole or the other. If you don't watch it, then the particle detectors will show that it can go through more than one hole at the same time.

Science has been grappling with the implications of the wave-particle duality ever since its discovery in the first half of the 20th century. But few people accept this principle at face value. The Copenhagen interpretation, put in place by Heisenberg, Niels Bohr, and Born in the 1920s, set out to do just that. But it was too unsettling a shift in worldview to accept in full. At present, the implications of these experiments are conveniently ignored by limiting the notion of quantum behavior to the microscopic world. But doing this has no basis in reason, and it is being challenged in laboratories around the world. New experiments carried out with huge molecules called buckyballs show that quantum reality extends into the macroscopic world as well. Experiments make it clear that another weird quantum phenomenon known as entanglement, which is usually associated with the micro world, is also relevant on macro scales. An exciting experiment, recently proposed (so-called scaled-up superposition), would furnish the most powerful evidence to date that the biocentric view of the world is correct at the level of living organisms.

One of the main reasons most people reject the Copenhagen interpretation of quantum theory is that it leads to the dreaded doctrine of solipsism. The late Heinz Pagels once commented: "If you deny the objectivity of the world unless you observe it and are conscious of it, then you end up with solipsism--the belief that your consciousness is the only one." Indeed, I once had one of my articles challenged by a reader who took this exact position. "I would like to ask Robert Lanza," he wrote, "whether he feels the world will continue to exist after the death of his consciousness. If not, it'll be hard luck for all of us should we outlive him" (New Scientist, 1991).

What I would question, with respect to solipsism, is the assumption that our individual separateness is an absolute reality. Bell's experiment implies the existence of linkages that transcend our ordinary way of thinking. An old Hindu poem says, "Know in thyself and all one self-same soul; banish the dream that sunders part from whole." If time is only a stubbornly persistent illusion, as we have seen, then the same can be said about space. The distinction between here and there is also not an absolute reality. Without consciousness, we can take any person as our new frame of reference. It is not my consciousness or yours alone, but ours. That's the new solipsism the experiments mandate. The theorist Bernard d'Espagnat, a collaborator of Niels Bohr and Enrico Fermi, has said that "non-separability is now one of the most certain general concepts in physics." This is not to say that our minds, like the particles in Bell's experiment, are linked in any way that can violate the laws of causality. In this same sense, there is a part of us connected to the glowworm by the pond near my house. It is the part that experiences consciousness, not in our external embodiments but in our inner being. We can only imagine and recollect things while in the body; this is for sure, because sensations and memories are molded into thought and knowledge in the brain. And although we identify ourselves with our thoughts and affections, it is an essential feature of reality that we experience the world piece by piece.

The sphere of physical reality for a glowworm and a human are decidedly different. However, the genome itself is carbon-based. Carbon is formed at the heart of stars and supernova explosions, formative processes of the universe. Life as we know it is limited by our spatio-temporal logic--that is, the genome traps us in the universe with which we are familiar. Animals (including those that evolved in the past) span part of the spectrum of that possibility. There are surely other information systems that correspond to other physical realities, universes based on logic completely different from ours and not based on space and time. The universe of space and time belong uniquely to us genome-based animals.

Eugene Wigner, one of the 20th century's greatest physicists, called it impossible "to formulate the laws of [physics] in a fully consistent way without reference to the consciousness [of the observer]." Indeed, quantum theory implies that consciousness must exist and that the content of the mind is the ultimate reality. If we do not look at it, the moon does not exist in a definite state. In this world, only an act of observation can confer shape and form to reality--to a dandelion in a meadow or a seed pod.

Posted by at November 28, 2017 6:19 AM