February 23, 2009
GALILEO VS THE MAN FROM GALILEE:
Galileo put us in our place: The astronomer proved we're not the center of the universe -- now we need to start acting like it. (Jeffrey Bennett, February 8, 2009, LA Times)
The revolution was not his alone. The idea was actually an ancient one, and other scientists had embraced it along the way. But it took Galileo and the telescope he built to prove the truth to the masses: Earth is not the center of the universe. [...][T]he cosmic perspective also should teach us some humility, because the central lesson of Galileo's discoveries is that we humans are no more central to the universe than our planet or star.
Except that science has demonstrated Galileo to have been quite wrong. Mr. Bennet's argument -- that humans don't much matter -- is an evil built on a lie.
MORE:
Was Einstein Wrong?: A Quantum Threat to Special Relativity: Entanglement, like many quantum effects, violates some of our deepest intuitions about the world. It may also undermine Einstein's special theory of relativity (David Z Albert and Rivka Galchen , 2/18/09, Scientific American)
Prior to the advent of quantum mechanics, and indeed back to the very beginnings of scientific investigations of nature, scholars believed that a complete description of the physical world could in principle be had by describing, one by one, each of the world's smallest and most elementary physical constituents. The full story of the world could be expressed as the sum of the constituents' stories.Quantum mechanics violates this belief.
Real, measurable, physical features of collections of particles can, in a perfectly concrete way, exceed or elude or have nothing to do with the sum of the features of the individual particles. For example, according to quantum mechanics one can arrange a pair of particles so that they are precisely two feet apart and yet neither particle on its own has a definite position. Furthermore, the standard approach to understanding quantum physics, the so-called Copenhagen interpretation—proclaimed by the great Danish physicist Niels Bohr early last century and handed down from professor to student for generations—insists that it is not that we do not know the facts about the individual particles' exact locations; it is that there simply aren't any such facts. To ask after the position of a single particle would be as meaningless as, say, asking after the marital status of the number five. The problem is not epistemological (about what we know) but ontological (about what is).
Physicists say that particles related in this fashion are quantum mechanically entangled with one another. The entangled property need not be location: Two particles might spin in opposite ways, yet with neither one definitely spinning clockwise. Or exactly one of the particles might be excited, but neither is definitely the excited one. Entanglement may connect particles irrespective of where they are, what they are and what forces they may exert on one another—in principle, they could perfectly well be an electron and a neutron on opposite sides of the galaxy. Thus, entanglement makes for a kind of intimacy amid matter previously undreamt of.
Entanglement lies behind the new and exceedingly promising fields of quantum computation and quantum cryptography, which could provide the ability to solve certain problems that are beyond the practical range of an ordinary computer and the ability to communicate with guaranteed security from eavesdropping [see "Quantum Computing with Ions," by Christopher R. Monroe and David J. Wineland; Scientific American, August 2008].
But entanglement also appears to entail the deeply spooky and radically counterintuitive phenomenon called nonlocality—the possibility of physically affecting something without touching it or touching any series of entities reaching from here to there. Nonlocality implies that a fist in Des Moines can break a nose in Dallas without affecting any other physical thing (not a molecule of air, not an electron in a wire, not a twinkle of light) anywhere in the heartland.
The greatest worry about nonlocality, aside from its overwhelming intrinsic strangeness, has been that it intimates a profound threat to special relativity as we know it. In the past few years this old worry—finally allowed inside the house of serious thinking about physics—has become the centerpiece of debates that may finally dismantle, distort, reimagine, solidify or seed decay into the very foundations of physics. [...]
We believe that everything there is to say about the world can in principle be put into the form of a narrative, or story. Or, in more precise and technical terms: everything there is to say can be packed into an infinite set of propositions of the form "at t1 this is the exact physical condition of the world" and "at t2 that is the exact physical condition of the world," and so on. But the phenomenon of quantum-mechanical entanglement and the spacetime geometry of special relativity—taken together—imply that the physical history of the world is infinitely too rich for that.
The trouble is that special relativity tends to mix up space and time in a way that transforms quantum-mechanical entanglement among distinct physical systems into something along the lines of an entanglement among physical situations at different times—something that in a perfectly concrete way exceeds or eludes or has nothing to do with any sum of situations at distinct temporal instants.
That result, like most theoretical results in quantum mechanics, involves manipulating and analyzing a mathematical entity called a wave function, a concept Erwin Schrödinger introduced eight decades ago to define quantum states. It is from wave functions that physicists infer the possibility (indeed, the necessity) of entanglement, of particles having indefinite positions, and so forth. And it is the wave function that lies at the heart of puzzles about the nonlocal effects of quantum mechanics.
But what is it, exactly? Investigators of the foundations of physics are now vigorously debating that question. Is the wave function a concrete physical object, or is it something like a law of motion or an internal property of particles or a relation among spatial points? Or is it merely our current information about the particles? Or what?
Quantum-mechanical wave functions cannot be represented mathematically in anything smaller than a mind-bogglingly high-dimensional space called a configuration space. If, as some argue, wave functions need to be thought of as concrete physical objects, then we need to take seriously the idea that the world's history plays itself out not in the three-dimensional space of our everyday experience or the four-dimensional spacetime of special relativity but rather this gigantic and unfamiliar configuration space, out of which the illusion of three-dimensionality somehow emerges. Our three-dimensional idea of locality would need to be understood as emergent as well. The nonlocality of quantum physics might be our window into this deeper level of reality.
The status of special relativity, just more than a century after it was presented to the world, is suddenly a radically open and rapidly developing question. This situation has come about because physicists and philosophers have finally followed through on the loose ends of Einstein's long- neglected argument with quantum mechanics—an irony-laden further proof of Einstein's genius. The diminished guru may very well have been wrong just where we thought he was right and right just where we thought he was wrong. We may, in fact, see the universe through a glass not quite so darkly as has too long been insisted.